2015年的国际计算机视觉大会(ICCV)上,美国普林斯顿大学计算机视觉和机器人实验室团队公布了他们研究的深度学习算法,根据其论文《DeepDriving: Learning Affordance for Direct Perception in Autonomous Driving》中出现的算法架构,该团队通过深度卷积神经网络直接感知驾驶操控(driving affordance),在大幅简化算法复杂度的同时,大大提升了自动驾驶算法的鲁棒性,被视为自动驾驶技术上的一个重大突破。
作为“机器感知和人工智能领域全球最顶尖的研究人员之一”(前Uber CEO Travis Kalanick语),Urtasun通过研究发现,在某些情况下,车辆可以通过普通摄像头获得激光雷达数据的三维路况信息。加入Uber几周后,在纽约举行的一次计算机视觉会议上,Urtasun分享了她的团队用摄像头代替激光雷达的研究成果。,该系统可以实时运行,在40米范围内性能表现对标激光雷达。但这个范围明显低于高端激光雷达的支持范围,看来Urtasun的团队还要继续努力。