尤辛斯基坐在一台电脑前、对着网络摄像头说话。摄像头接收的数据被输入深度神经网络,而与此同时,该网络也在由尤辛斯基和同事们开发的Deep Visualization(深度可视化)软件工具包进行分析。尤辛斯基在几个屏幕间来回切换,然后将网络中的一个神经元放大。“这个神经元似乎能够对面部图像做出反应。”人脑中也有这种神经元,其中多数都集中在一处名为“梭状脸区”(fusiform face area)的脑区中。该脑区最早由1992年开始的一系列研究发现,被视作人类神经科学最可靠的观察结果之一。对脑区的研究还需借助正电子发射计算机断层扫描等先进技术,但尤辛斯基只需凭借代码、便可对人造神经元展开详细分析。
追求可解释性是否为一项愚蠢之举呢?2015年,加州大学圣地亚哥分校的扎克利?立顿(Zachary Lipton)发表了一篇名为《模型可解释性的迷思》(The Myth of Model Interpretability)的博文,批判性地探讨了解读神经网络背后的动机、以及为大型数据集打造可解读的机器学习模型的价值。在2016年国际机器学习大会(ICML)上,他还向马里奥托夫与两名同事组织的“人类可解释性”专题研讨会提交了一篇与该话题相关的、颇具争议性的论文。