1984 年,瑞典营养学家拉斯?奥雷?拜格伦(Lars Olov Bygren)发起了一项关于奥佛卡利克斯(?verkalix)人的研究。奥夫卡利克斯是瑞典的一个偏远地区,几个世纪以来,那里的人们在卡利克斯河(Kalix River)沿岸艰难地维持着生活:每隔几年,他们就会遭受毁灭性的作物欠收,长达六个月的冬季他们几乎没有食物;其他风调雨顺的年份里,好天气则给他们带来大丰收。
它每天都会驱动身体内的生物循环:白天激活某些基因,夜间再终止它们的表达。它也可以改变基因的运作方式,以应对不可预测的信号:受到感染时,免疫细胞会重新整合自己的 DNA 表达,进入对抗病原体的战斗模式,让某些基因开始制造蛋白质,同时沉默不必要的基因;免疫细胞增殖时,这种对抗病原体状态下的表观基因组会作为一种细胞记忆传给它们的子细胞。
我们大脑中储存的记忆之所以持续存在,或许也与表观基因组发生的改变有关。20 世纪中叶,神经科学家发现新记忆形成时大脑神经元之间会构建起连接;最近,研究发现新记忆的形成会伴随一些表观遗传上的改变。例如,神经元中的 DNA 双螺旋会被重新排列、新的甲基化模式会被确定。这些持久的变化让储存长期记忆的神经元继续制造蛋白质,以保持神经元之间的连接强度。
许多关于人类和小鼠的研究规模都太小了,代与代之间的表观遗传相似性也可能是统计学上的错误。从分子水平上,很难看出父母的经历是如何准确地标记后代基因的,细胞中 DNA 的甲基化模式的确会改变,但尚不清楚这些变化是否可以遗传。
在受精过程中,精子的表观基因组会受到相应蛋白质的攻击。随着胚胎的成长,胚胎细胞清除了 DNA 上余留的大部分甲基化修饰,并形成新的表观基因组。这使胚胎中的细胞呈现新的面貌。胚胎发育到大约三周时,一小部分细胞就会接收到一组信号,告知它们是被永生选中的细胞,会以卵子或精子的形式存在。这些细胞的表观基因组会再次改变,DNA 中大部分甲基化修饰会被再次清除。