Eric Grimson同时还是麻省理工伯纳德?戈登(Bernard M.Gordon)医学工程主席、美国人工智能协会会士(AAAI Fellow)、美国电气与电子工程学会会士(IEEE Fellow)、美国计算机协会会士(ACM Fellow),并在麻省理工学院获得了玻色教学卓越奖(Boss Award for Excellence in Teaching)。他于1975年取得加拿大里贾纳大学数学(高荣)和学物理学士。1980年,他在麻省理工学院获得数学博士学位。
Eric Grimson:你问了一个我认为非常重要的问题。如果你不介意的话,我会适当地把这个话题放大一些。我想AI领域中的很多人都意识到,在使用AI系统的过程中,伦理是很重要的。在医疗中当然会出现伦理问题,这也可能会发生在自动驾驶的汽车上。如果发生事故,谁该为此负责?该如何判定他们的责任?这是政府需要做出的决定,是社会需要做出的决定。这些问题需要被好好地讨论。我认为在短期内,最有可能的解决方案是AI系统帮助人们做决定(而不是做出最终的决定)。让我们以医学为例,想象一下,计算机查看所有的信息并将其组合在一起,它可以告诉医生该怎么做,或者可以告诉医生这是与这个病人相关的所有信息的最佳总结,这是计算机给出的建议,但医生仍然可以做出自己的决定。但如果计算机遗漏了某些信息呢?那就还是会产生道德问题。所以我认为,在短期内,人还是应该参与到决策环节中。
澎湃新闻:所以你认为AI应该扮演一个顾问的角色?
Eric Grimson:是的,是的。特别是在医学上,我认为这一点是非常重要的。而且大部分我所知道的AI医疗领域的项目也都持有这个观点,他们所关注的是“如何让医生成为更好的医生的”,但最终还是由医生做出决定。
澎湃新闻:但在自动驾驶领域,这个决定权似乎是在AI手中?
Eric Grimson:你是对的。在一些例子中,人类没有参与到决策中。自动驾驶汽车就是其中的一个例子。所以我认为,研究人员需要尽自己最大的努力来确保这类问题尽可能少发生。但最终人们需要决定自己想要在什么程度上使用自动驾驶汽车,这是社会、政府和个人的选择。
Eric Grimson:你说得对,MIT发起了这个新的计划Quest for Intelligence。这个项目有四个部分。我先告诉你是哪四个部分,然后再解释我们为什么要做这个项目。
第一部分我们称之为“核心”(Core),它着眼于智力科学(Science of Intelligence)。这不仅仅是新电脑和新算法,而是想尝试理解在人的大脑里发生了什么。神经科学告诉我们大脑是什么样的,认知科学告诉我们人类是怎样思考的,这些信息综合起来会告诉我们下一代的算法应该是什么样的。我们认为这很重要,因为AI经历了很多周期,发生了很多变化。如今,深度学习很受欢迎,每个人都做神经网络。这些技术打败了世界上最好的围棋选手,令人印象十分深刻。
Eric Grimson:是的。这种系统可以读一至两百万篇文章,然后建立了一个可以使用的模型。你也可以想象在其他的领域使用它,比如在合成生物学中,事实上,MIT已经有人开始做这件事了。因此,AI可能是一个很好的工具,可以用来帮助一个人更好地理解文献中出现的大量信息。
澎湃新闻:为什么这个MIT IQ项目选择与商汤科技(SenseTime)合作?
Eric Grimson:我们会和很多不同的公司合作。我们早些时候宣布了与IBM的合作,他们带来了他们的沃森系统,他们对健康领域非常感兴趣。商汤科技对于我们来说是一个很好的合作伙伴。这里有几个原因,一个是商汤科技的创始人之一是MIT的毕业生,所以他很了解我们。但是更重要的是,我们认为与商汤科技的合作很重要。因为他们有兴趣在不同的领域从事基础研究,并且有兴趣以合作的形式进行这些研究。因此,我们让MIT的研究者与来自中国香港和大陆的研究人员互动。不同的人有不同的想法,与商汤科技的合作给了我们一个把不同的人们聚在一起的机会。MIT也希望在世界各地找到这样的合作伙伴。
澎湃新闻:商汤科技的创始人汤晓鸥曾是MIT的博士生,他是您的学生吗?
Eric Grimson:我参加了他的论文委员会,从技术上讲,他的导师是我的第一批学生之一。所以他是我学生的学生(“ grand-student”)。他不是我的学生,但我参与并帮助了他的研究。
Eric Grimson:我想要稍微延伸一下这个问题。我首先要问一个更广泛的问题:是不是每个大学生都应该了解一些计算思维(computational thinking)?我认为答案是肯定的。MIT正在努力的过程中,或者说在思考如何达到这种要求。不管你是计算机科学家,还是物理学家,经济学家,政治科学家,不管你的专业是什么,我们认为你都应该知道并掌握一点所谓的计算思维,比如什么是算法。这不同于能够编程,编程很重要。但是“你怎么看待这个问题”是我们认为更重要的。
Eric Grimson:拥有海量数据是很有价值的,但人们在使用这些数据时需要考虑一些问题:一个就是你的数据中是否包含偶然性偏差。有很多著名的案例,比如人脸识别算法在你我这样的人身上运行效果很好,但在一些肤色或脸型与我们差别巨大的人身上就不起作用了。这并不是有意的。如果你仅仅对恰好位于所有可能性空间中的一部分数据运行算法,就会在无意间引入偏差了。所以在考虑数据集合时,其中一个问题就是你如何确保不会发生偶然性偏差,而这些偏差会影响最终的结果。还有其他一些问题,在美国是这样,我相信在中国也是如此。
Eric Grimson:当然。我并不是说这只是美国公司的问题,我说的是美国版的故事。但你刚刚举了一个很好的例子,阿里掌握着海量数据,京东也会。我认为社会学家应该与政府和企业合作,探讨如何有效使用数据,让人们的生活更美好,但同时要保护人们的数据隐私。
澎湃新闻:所以应该制定一些政策进行引导?
Eric Grimson:这也是大多数人的愿望。我不是要告诉政府该怎么做,但我认为很多人也和我一样有着强烈的愿望:我希望自己能够决定我想要分享多少自己的数据。
在欧洲已经有这样的先例了,我觉得欧洲在这方面走在最前沿。欧盟已经就这些隐私问题达成一致,主要是提供了一种选择――在参与之前必须要知情同意(“You have to agree that before participate”)。随着这套体制越来越普遍,每一个社会、每一个政府都要考虑如何掌控这种情况,要制定什么样的政策。
Eric Grimson:许多大学都是有这样的政策。和前面提到的一样,在为大学做事和为公司做事之间应该控制利益冲突。应该由各个大学来决定制定什么样的政策。但我认为,如果大学太脱离实际问题,就无法做到让世界变得更美好,这本是大学最终应该做的事情:培训下一代的领导者,探索能够改善人们生活的知识。所以如果你在大学里太孤立,你就错过了这样的机会。
Eric Grimson:这个问题问得好,我对中国的大学很熟悉,我认为中国政府也希望看到这样的事情发生。评价一所大学有很多方法,我们都说我们不看世界排名,但我们都会悄悄地看。如果要回答你的问题,直言不讳地讲,大多数人会说当今世界上最好的大学仍然在美国,哈佛大学、麻省理工学院、耶鲁大学、普林斯顿大学、斯坦福大学、芝加哥大学等,我还遗漏了一些。亚洲、欧洲也有一些非常好的大学,但其中大部分目前仍在美国。随着时间的推移,这种情况可能会改变。
Eric Grimson:正如你提到的那样,有很多国家都在人工智能上有了很大进步。它最初主要起源于美国,但英国像爱丁堡等地很早就跟进了。在法国、德国这些地方都有实验室,日本也投入了大量的精力。当然,中国在这一领域也发展迅猛。我觉得很难区分。我认为在每个领域你都能看到这些国家的优势。我想说的是,当涉及到基础理论的时候,也许美国在某些方面仍然微微领先。
Eric Grimson:我希望在AI领域能够形成国际合作。每个国家都有自己的需求,每个国家都想为自己的国家做最好的事情。但是,我不认为任何一个国家能够完全成为中心。美国不会。即使美国有斯坦福、伯克利、麻省理工和哈佛,这些学校都在做不同的事情。但我认为合作将真正推动这一领域的发展,目标应该是让人工智能系统更好地造福每个人的生活。如果我们合作会怎样呢?只会越来越好。